\qquad Date: \qquad Class: \qquad
Sour patch Kids come in a pack with 10 total. Laffy Taffys come in a pack with 6 Laffy Taffys. Mr. Warnock wants an equal number of Sour patch Kids and Laffy Taffys. What is the smallest number of Sour patch Kids and Laffy Taffys that Mr. Warnock could get in order to have an equal number of each?

This is a \qquad word problem because \qquad (circle one)

How many of each can he get to have an equal amount of both candies?

How do you know?

Prove your answer using the table below:

6	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

10	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

The LCM of 6 and 10 is:

The basketball team practices everyday 8 days. The track team practices every 6 days. Today, they both had practice. How many days will pass before they both have practice on the same day again?

This is a \qquad word problem because \qquad
(circle one)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	Track P. Bball P.	1 1	2 2	3 3	4 4	5 5
Track P.	1 7	2 Bball P.	3 1			
				\square \square		
		ntp/wwwvener 22	Ecasomentamear		Pmrable caenam	c2013veneu2uc

How many days will pass before they both have practice on the same day again?

How do you know?

Prove your answer using the table below:

6	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

8	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

The LCM of 6 and 8 is:

Tours of the National Capitol and the White House begin at a tour agency. Tours for the National Capitol leave every 8 minutes. Tours for the White House leave every 12 minutes. They both just left at the same time. How many minutes will pass before the tours leave again at the same time?

This is a \qquad word problem because \qquad (circle one)

How many minutes will pass before they leave at the same time again?

How do you know?

Prove your answer using the table below:

8	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

12	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

The LCM of 8 and 12 is:

Name: \qquad Date: \qquad Class:
Starbursts come in a pack with 10 starbursts. Lollipops come in a pack with 6 lollipops. Ms. Maljevic wants an equal number of starbursts and lollipops. What is the smallest number of starbursts and lollipops that Ms. Maljevic could get in order to have an equal number of each?

This is a GCF LCM word problem because \qquad
(circle one)

Draw a picture to represent the problem:

How many of each will she need in order to have an equal amount?

How do you know?

Prove your answer using the table below:

6	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

10	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

The LCM of 6 and 10 is:

The track team practices everyday 5 days. The basketball team practices every 3 days. Today they both had practice. How many days will pass before they both have practice on the same day again?

This is a GCF LCM word problem because \qquad
(circle one)

Draw a picture to represent the problem:

How many days will pass before they practice on the same day again?

How do you know?

Prove your answer using the table below:

3	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

5	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

The LCM of 3 and 5 is:

The movie theatre is giving out free snacks on Tuesdays. Every $4^{\text {th }}$ customer on Tuesday will receive a free soda. Every $10^{\text {th }}$ customer will receive a free small popcorn. Who will be the first customer to receive both a free soda AND a free small popcorn?

This is a \qquad GCF LCM word problem because \qquad
(circle one)

Draw a picture to represent the problem:

How many minutes will pass before they leave at the same time again?

How do you know?

Prove your answer using the table below:

4	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

10	
$\times 1$	
$\times 2$	
$\times 3$	
$\times 4$	
$\times 5$	
$\times 6$	
$\times 7$	

The LCM of 4 and 10 is:

Readiness:	Positive Contribution	100	Understanding	$/ 60$

Comments:

Grade:

